Title: | Automated Deconvolution Augmentation of Profiles for Tissue Specific Cells |
---|---|
Description: | Tools to construct (or add to) cell-type signature matrices using flow sorted or single cell samples and deconvolve bulk gene expression data. Useful for assessing the quality of single cell RNAseq experiments, estimating the accuracy of signature matrices, and determining cell-type spillover. Please cite: Danziger SA et al. (2019) ADAPTS: Automated Deconvolution Augmentation of Profiles for Tissue Specific cells <doi:10.1371/journal.pone.0224693>. |
Authors: | Samuel A Danziger |
Maintainer: | Samuel A Danziger <[email protected]> |
License: | MIT + file LICENSE |
Version: | 1.0.22 |
Built: | 2024-12-28 04:26:07 UTC |
Source: | https://github.com/sdanzige/adapts |
Build an augmented signature matrix from an initial signature matrix, source data, and a list of differentially expressed genes (gList). The user might want to modify gList to make certain that particular genes are included in the matrix. The algorithm will be to add one additional gene from each new cell type Record the condition number, and plot those. Will only consider adding rows shared by fullData and newData
newMatData <- AugmentSigMatrix(origMatrix, fullData, newData, gList)
AugmentSigMatrix( origMatrix, fullData, newData, gList, nGenes = 1:100, plotToPDF = TRUE, imputeMissing = TRUE, condTol = 1.01, postNorm = FALSE, minSumToRem = NA, addTitle = NULL, autoDetectMin = FALSE, calcSpillOver = FALSE, pdfDir = tempdir(), plotIt = TRUE )
AugmentSigMatrix( origMatrix, fullData, newData, gList, nGenes = 1:100, plotToPDF = TRUE, imputeMissing = TRUE, condTol = 1.01, postNorm = FALSE, minSumToRem = NA, addTitle = NULL, autoDetectMin = FALSE, calcSpillOver = FALSE, pdfDir = tempdir(), plotIt = TRUE )
origMatrix |
The original signature matrix |
fullData |
The full data for the signature matrix |
newData |
The new data to add signatures from |
gList |
The ordered list of genes from running rankByT() on newData. NOTE: best genes at the bottom!! |
nGenes |
The number of additional genes to consider (DEFAULT: 1:100) |
plotToPDF |
Plot the output condition numbers to a pdf file. (DEFAULT: TRUE) |
imputeMissing |
Set to TRUE to impute missing values. NOTE: adds stoachasiticity (DEFAULT: TRUE) |
condTol |
Setting higher tolerances will result in smaller numbers extra genes. 1.00 minimizes compliment number (DEFAULT: 1.00) |
postNorm |
Set to TRUE to normalize new signatures to match old signatures. (DEFAULT: FALSE) |
minSumToRem |
Set to non-NA to remove any row with the sum(abs(row)) < minSumToRem (DEFAULT: NA) |
addTitle |
An optional string to add to the plot and savefile (DEFAULT: NULL) |
autoDetectMin |
Set to true to automatically detect the first local minima. GOOD PRELIMINARY RESULTS (DEAFULT: FALSE) |
calcSpillOver |
Use the training data to calculate a spillover matrix (DEFAULT: FALSE) |
pdfDir |
A fold to write the pdf file to if plotToPDF=TRUE (DEFAULT: tempdir()) |
plotIt |
Set to FALSE to suppress non-PDF plotting (DEFAULT: TRUE) |
an augmented cell type signature matrix
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") #Fake source data with replicates for all purified cell types. # Note in this fake data set, many cell types have exactly one replicate fakeAllData <- cbind(fullLM22, as.data.frame(exprData)) gList <- rankByT(geneExpr = fakeAllData, qCut=0.3, oneCore=TRUE) newSig <- AugmentSigMatrix(origMatrix=smallLM22, fullData=fullLM22, newData=exprData, gList=gList, plotToPDF=FALSE)
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") #Fake source data with replicates for all purified cell types. # Note in this fake data set, many cell types have exactly one replicate fakeAllData <- cbind(fullLM22, as.data.frame(exprData)) gList <- rankByT(geneExpr = fakeAllData, qCut=0.3, oneCore=TRUE) newSig <- AugmentSigMatrix(origMatrix=smallLM22, fullData=fullLM22, newData=exprData, gList=gList, plotToPDF=FALSE)
Use ranger to select features and build a genesInSeed gene matrix
buildSeed( trainSet, genesInSeed = 200, groupSize = 30, randomize = TRUE, num.trees = 1000, plotIt = TRUE, trainSet.3sam = NULL, trainSet.30sam = NULL, proportional = FALSE )
buildSeed( trainSet, genesInSeed = 200, groupSize = 30, randomize = TRUE, num.trees = 1000, plotIt = TRUE, trainSet.3sam = NULL, trainSet.30sam = NULL, proportional = FALSE )
trainSet |
Each row is a gene, and each column is an example of a particular cell type, ie from single cell data |
genesInSeed |
The maximum number of genes in the returned seed matrix (DEFAULT: 200) |
groupSize |
The number of groups to break the trainSet into by ADAPTS::scSample (DEFAULT: 30) |
randomize |
Set to TRUE randomize the sets selected by ADAPTS::scSample (DEFAULT: TRUE) |
num.trees |
The number of trees to be used by ranger (DEFAULT: 1000) |
plotIt |
Set to TRUE to plot (DEFAULT: TRUE) |
trainSet.3sam |
Optional pre-calculated ADAPTS::scSample(trainSet, groupSize = 3) (DEFAULT: NULL) |
trainSet.30sam |
Optional pre-calculated ADAPTS::scSample(trainSet, groupSize=groupSize, randomize=randomize) (DEFAULT: NULL) |
proportional |
Set to true to make the training set cell type proportional. Ignores group size (DEFAULT: FALSE) |
A list with condition numbers and gene lists
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise newSigMat <- buildSeed(trainSet=dataMat)
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise newSigMat <- buildSeed(trainSet=dataMat)
Build a spillover matrix, i.e. what do purified samples deconvolve as?
spillExpr <- buildSpilloverMat(refExpr, geneExpr, method='DCQ')
buildSpilloverMat(refExpr, geneExpr, method = "DCQ")
buildSpilloverMat(refExpr, geneExpr, method = "DCQ")
refExpr |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The full gene expression for purified cell types. Multiple columns (examples) for each column in the reference expr. |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
A spillover matrix showing how purified cell types deconvolve
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] spillover <- buildSpilloverMat(refExpr=smallLM22, geneExpr=fullLM22, method='DCQ')
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] spillover <- buildSpilloverMat(refExpr=smallLM22, geneExpr=fullLM22, method='DCQ')
Calculate correlation coeffifients, p-Values, MAE, RMSE for deconvolution predictions
calcAcc(estimates, reference)
calcAcc(estimates, reference)
estimates |
The estimated cell percentages |
reference |
The reference cell percentages |
a list with a multiple sets
estimates <- sample(c(runif(8), 0 ,0)) estimates <- 100 * estimates / sum(estimates) reference <- sample(c(runif(7), 0 , 0, 0)) reference <- 100 * reference / sum(reference) calcAcc(estimates, reference)
estimates <- sample(c(runif(8), 0 ,0)) estimates <- 100 * estimates / sum(estimates) reference <- sample(c(runif(7), 0 , 0, 0)) reference <- 100 * reference / sum(reference) calcAcc(estimates, reference)
Build clusters based on n-pass spillover matrix
clustWspillOver( sigMatrix, geneExpr, nPasses = 100, deconMatrices = NULL, method = "DCQ" )
clustWspillOver( sigMatrix, geneExpr, nPasses = 100, deconMatrices = NULL, method = "DCQ" )
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix. |
nPasses |
The maximum number of iterations for spillToConvergence (DEFAULT: 100) |
deconMatrices |
Optional pre-computed results from spillToConvergence (DEFAULT: NULL) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
Cell types grouped by cluster
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] clusters <- clustWspillOver(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] clusters <- clustWspillOver(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10)
Collapse the cell types (in rows) to super-classes Including MGSM36 cell types
collapseCellTypes(cellCounts, method = "Pheno4")
collapseCellTypes(cellCounts, method = "Pheno4")
cellCounts |
A matrix with cell counts |
method |
The method for combining cell types ('Default: 'Pheno2') Pheno1: Original cell-type based combinations Pheno2: Original cell-type based combinations, omitting Macrophages Pheno3: Alt Phenotype definitions based on WMB deconvolution correlations Pheno4: Consensus cell types Pheno5: Consensus cell types, combined myeloma & plasma Spillover1: Empirical combinations based on compToLM22source Spillover2: More agressive combination based on empirical combinations based on compToLM22source Spillover3: Combinations determined by spillToConvergence on 36 cell types |
a cell estimate matrix with the names changed
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DCQ(refExpr=smallLM22, geneExpr=fullLM22) collapseCounts <- collapseCellTypes(cellCounts=cellEst)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DCQ(refExpr=smallLM22, geneExpr=fullLM22) collapseCounts <- collapseCellTypes(cellCounts=cellEst)
curExpr <- estCellCounts.nPass(sigMatrix, deconMatrices)
estCellCounts.nPass(geneExpr, deconMatrices, method = "DCQ")
estCellCounts.nPass(geneExpr, deconMatrices, method = "DCQ")
geneExpr |
The gene expression matrix |
deconMatrices |
The results from spillToConvergence() |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
An estimate of cell counts
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] deconMatrices <- spillToConvergence(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10) cellCounts <- estCellCounts.nPass(geneExpr=fullLM22, deconMatrices=deconMatrices, method='DCQ')
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] deconMatrices <- spillToConvergence(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10) cellCounts <- estCellCounts.nPass(geneExpr=fullLM22, deconMatrices=deconMatrices, method='DCQ')
A wrapper function to call any of the estCellPercent functions Modified on June 16th 2021 to quantile normalize the geneExpr data to match refExpr Set preNormalize to FALSE for previous behavior.
estCellPercent( refExpr, geneExpr, preNormalize = TRUE, verbose = TRUE, method = "DCQ", ... )
estCellPercent( refExpr, geneExpr, preNormalize = TRUE, verbose = TRUE, method = "DCQ", ... )
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
preNormalize |
Set to TRUE to quantile normalize geneExpr to match refExpr (DEFAULT: TRUE) |
verbose |
Set to TRUE to echo the results of parameters (DEFAULT: TRUE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
... |
Parameters for estCellPercent.X (e.g. number_of_repeats for .DCQ) |
A matrix with cell type estimates for each samples
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent(refExpr=smallLM22, geneExpr=fullLM22, preNormalize=FALSE, verbose=TRUE)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent(refExpr=smallLM22, geneExpr=fullLM22, preNormalize=FALSE, verbose=TRUE)
Use DCQ to estimate the cell count percentage Requires installation of package 'ComICS' To Do: Also report the standard deviation as a confidence metric
estCellPercent.DCQ( refExpr, geneExpr, marker_set = NULL, number_of_repeats = 10, alpha = 0.05, lambda = 0.2 )
estCellPercent.DCQ( refExpr, geneExpr, marker_set = NULL, number_of_repeats = 10, alpha = 0.05, lambda = 0.2 )
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
marker_set |
data frames of one column, that includes a preselected list of genes that likely discriminate well between the immune-cell types given in the reference data. (DEFAULT: NULL, i.e. one for each gene in the refExpr) |
number_of_repeats |
using one repeat will generate only one output model. Using many repeats, DCQ calculates a collection of models, and outputs the average and standard deviation for each predicted relative cell quantity. (DEFAULT: 1) |
alpha |
The elasticnet mixing parameter, with 0 <= alpha <= 1. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. (DEFAULT: 0.05) |
lambda |
A minimum value for the elastic net lambda parameter (DEFAULT: 0.2) |
A matrix with cell type estimates for each samples
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DCQ(refExpr=smallLM22, geneExpr=fullLM22)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DCQ(refExpr=smallLM22, geneExpr=fullLM22)
Use DeconRNASeq to estimate the cell count percentage Performs with similar effectiveness as DCQ, but identifies different proportions of cell-types Requires installation of package 'DeconRNASeq': source("https://bioconductor.org/biocLite.R") biocLite("DeconRNASeq")
<[email protected]> TGJDS (2013). DeconRNASeq: Deconvolution of Heterogeneous Tissue Samples for mRNA-Seq data. R package version 1.18.0.
cellEst <- estCellPercent.DeconRNASeq(refExpr, geneExpr, marker_set=NULL)
estCellPercent.DeconRNASeq(refExpr, geneExpr, marker_set = NULL)
estCellPercent.DeconRNASeq(refExpr, geneExpr, marker_set = NULL)
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
marker_set |
data frames of one column, that includes a preselected list of genes that likely discriminate well between the immune-cell types given in the reference data. (DEFAULT: NULL, i.e. one for each gene in the refExpr) |
A matrix with cell type estimates for each samples
#This toy example, donttest due to performance issues in windows development build library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DeconRNASeq(refExpr=smallLM22, geneExpr=fullLM22)
#This toy example, donttest due to performance issues in windows development build library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.DeconRNASeq(refExpr=smallLM22, geneExpr=fullLM22)
Use non-negative least squares regression to deconvolve a sample This is going to be to simple to be useful This might be more interesting if I used non-positive least squares to detect 'other'
estCellPercent.nnls(refExpr, geneExpr)
estCellPercent.nnls(refExpr, geneExpr)
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
A matrix with cell type estimates for each samples
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.nnls(refExpr=smallLM22, geneExpr=fullLM22)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.nnls(refExpr=smallLM22, geneExpr=fullLM22)
Use R function proportionsInAdmixture to estimate the cell count percentage Uses the 'WGCNA' package
cellEst <- estCellPercent.proportionsInAdmixture(refExpr)
estCellPercent.proportionsInAdmixture(refExpr, geneExpr, marker_set = NULL)
estCellPercent.proportionsInAdmixture(refExpr, geneExpr, marker_set = NULL)
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
marker_set |
data frames of one column, that includes a preselected list of genes that likely discriminate well between the immune-cell types given in the reference data. (DEFAULT: NULL, i.e. one for each gene in the refExpr) |
A matrix with cell type estimates for each samples
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.proportionsInAdmixture(refExpr=smallLM22, geneExpr=fullLM22)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellEst <- estCellPercent.proportionsInAdmixture(refExpr=smallLM22, geneExpr=fullLM22)
Use a spillover matrix to deconvolve a samples
estCellPercent.spillOver(spillExpr, refExpr, geneExpr, method = "DCQ", ...)
estCellPercent.spillOver(spillExpr, refExpr, geneExpr, method = "DCQ", ...)
spillExpr |
A spill over matrix, as calculated by buildSpilloverMat(). (e.g. LM22.spillover.csv.gz) |
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
... |
Parameters for estCellPercent.X (e.g. number_of_repeats for .DCQ) |
a matrix of estimate cell type percentages in samples
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] spillover <- buildSpilloverMat(refExpr=smallLM22, geneExpr=fullLM22) cellEst <- estCellPercent.spillOver(spillExpr=spillover, refExpr=smallLM22, geneExpr=fullLM22)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] spillover <- buildSpilloverMat(refExpr=smallLM22, geneExpr=fullLM22) cellEst <- estCellPercent.spillOver(spillExpr=spillover, refExpr=smallLM22, geneExpr=fullLM22)
Use SVMDECON to estimate the cell count percentage Performs considerably worse in deconvolution than DCQ
cellEst <- estCellPercent.svmdecon(refExpr, geneExpr)
estCellPercent.svmdecon( refExpr, geneExpr, marker_set = NULL, useOldVersion = F, progressBar = T )
estCellPercent.svmdecon( refExpr, geneExpr, marker_set = NULL, useOldVersion = F, progressBar = T )
refExpr |
a data frame representing immune cell expression profiles. Each row represents an expression of a gene, and each column represents a different immune cell type. colnames contains the name of each immune cell type and the rownames includes the genes' symbol. The names of each immune cell type and the symbol of each gene should be unique. Any gene with missing expression values must be excluded. |
geneExpr |
a data frame representing RNA-seq or microarray gene-expression profiles of a given complex tissue. Each row represents an expression of a gene, and each column represents a different experimental sample. colnames contain the name of each sample and rownames includes the genes' symbol. The name of each individual sample and the symbol of each gene should be unique. Any gene with missing expression values should be excluded. |
marker_set |
data frames of one column, that includes a preselected list of genes that likely discriminate well between the immune-cell types given in the reference data. (DEFAULT: NULL, i.e. one for each gene in the refExpr) |
useOldVersion |
Set the TRUE to 2^ the data (DEFAULT: FALSE) |
progressBar |
Set to TRUE to show a progress bar (DEFAULT: TRUE) |
A matrix with cell type estimates for each samples #This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,]
cellEst <- estCellPercent.svmdecon(refExpr=smallLM22, geneExpr=fullLM22)
Find out at which iteration the results converge, i.e. the mean results are stable.
findConvergenceIter(curSeq, changePer = 1, winSize = 5)
findConvergenceIter(curSeq, changePer = 1, winSize = 5)
curSeq |
A sequence of results that generated from each iteration of the loop |
changePer |
The maximum percentage of change allowed |
winSize |
The window size for mean calculation |
The minimum number of iterations needed for the results to converge
Get f1 / mcc and other accuracy measurements for binary predictions. Provide either an estimate and reference vector e.g. getF1mcc(estimate, reference) Or TPs, FPs, etc. e.g. getF1mcc(tps=3, fps=4, tns=7, fns=2)
getF1mcc( estimate = NULL, reference = NULL, tps = NULL, fps = NULL, tns = NULL, fns = NULL )
getF1mcc( estimate = NULL, reference = NULL, tps = NULL, fps = NULL, tns = NULL, fns = NULL )
estimate |
A binary vector of predictions |
reference |
a binary vector of actual values |
tps |
The number of TPs |
fps |
The number of FPs |
tns |
The number of TNs |
fns |
The number of FNs |
A vector with sensitivity, specificity, fpr, fdr, f1, agreement, p.value, mcc, and mcc.p
estimates <- sample(c(runif(8), 0 ,0)) reference <- sample(c(runif(7), 0 , 0, 0)) accuracyStats <- getF1mcc(estimate=estimates>0, reference=reference>0)
estimates <- sample(c(runif(8), 0 ,0)) reference <- sample(c(runif(7), 0 , 0, 0)) accuracyStats <- getF1mcc(estimate=estimates>0, reference=reference>0)
Load a map of cell type names
getLM22cells()
getLM22cells()
a map of cell types names
cellMap <- getLM22cells()
cellMap <- getLM22cells()
Use ranger to select features and build a genesInSeed gene matrix
gListFromRF(trainSet, oneCore = FALSE)
gListFromRF(trainSet, oneCore = FALSE)
trainSet |
Each row is a gene, and each column is an example of a particular cell type, e.g. ADAPTS::scSample(trainSet, groupSize=30) |
oneCore |
SEt to TRUE to disable multicore (DEFAULT: FALSE) |
A cell specific geneList for ADAPTS::AugmentSigMatrix()
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise gList <- gListFromRF(trainSet=dataMat, oneCore=TRUE)
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise gList <- gListFromRF(trainSet=dataMat, oneCore=TRUE)
Deconvolve cell types based on clusters detected by an n-pass spillover matrix
hierarchicalClassify( sigMatrix, geneExpr, toPred, hierarchData = NULL, pdfDir = tempdir(), oneCore = FALSE, nPasses = 100, remZinf = TRUE, method = "DCQ", useRF = TRUE, incNonCluster = TRUE )
hierarchicalClassify( sigMatrix, geneExpr, toPred, hierarchData = NULL, pdfDir = tempdir(), oneCore = FALSE, nPasses = 100, remZinf = TRUE, method = "DCQ", useRF = TRUE, incNonCluster = TRUE )
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix |
toPred |
The gene expression to ultimately deconvolve |
hierarchData |
The results of hierarchicalSplit OR hierarchicalSplit.sc (DEFAULT: NULL, ie hierarchicalSplit) |
pdfDir |
A fold to write the pdf file to (DEFAULT: tempdir()) |
oneCore |
Set to TRUE to disable parallelization (DEFAULT: FALSE) |
nPasses |
The maximum number of iterations for spillToConvergence (DEFAULT: 100) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity when generating gList (DEFAULT: FALSE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
useRF |
Set to TRUE to use ranger random forests to build the seed matrix (DEFAULT: TRUE) |
incNonCluster |
Set to TRUE to include a 'nonCluster' in each of the sub matrices (DEFAULT: TRUE) |
a matrix of cell counts
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellCounts <- hierarchicalClassify(sigMatrix=smallLM22, geneExpr=fullLM22, toPred=fullLM22, oneCore=TRUE, nPasses=10, method='DCQ')
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] cellCounts <- hierarchicalClassify(sigMatrix=smallLM22, geneExpr=fullLM22, toPred=fullLM22, oneCore=TRUE, nPasses=10, method='DCQ')
Attempt to deconvolve cell types by building a hierarchy of cell types using spillToConvergence to determine cell types that are not signficantly different. First deconvolve those clusters of cell types. Deconvolution matrices are then built to separate the cell types that formerly could not be separated.
hierarchicalSplit( sigMatrix, geneExpr, oneCore = FALSE, nPasses = 100, deconMatrices = NULL, remZinf = TRUE, method = "DCQ", useRF = TRUE, incNonCluster = TRUE )
hierarchicalSplit( sigMatrix, geneExpr, oneCore = FALSE, nPasses = 100, deconMatrices = NULL, remZinf = TRUE, method = "DCQ", useRF = TRUE, incNonCluster = TRUE )
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix |
oneCore |
Set to TRUE to disable parallelization (DEFAULT: FALSE) |
nPasses |
The maximum number of iterations for spillToConvergence (DEFAULT: 100) |
deconMatrices |
Optional pre-computed results from spillToConvergence (DEFAULT: NULL) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity when generating gList (DEFAULT: FALSE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
useRF |
Set to TRUE to use ranger random forests to build the seed matrix (DEFAULT: TRUE) |
incNonCluster |
Set to TRUE to include a 'nonCluster' in each of the sub matrices (DEFAULT: TRUE) |
A list of clusters and a list of signature matrices for breaking those clusters
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] clusters <- hierarchicalSplit(sigMatrix=smallLM22, geneExpr=fullLM22, oneCore=TRUE, nPasses=10, deconMatrices=NULL, remZinf=TRUE, method='DCQ', useRF=TRUE, incNonCluster=TRUE)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] clusters <- hierarchicalSplit(sigMatrix=smallLM22, geneExpr=fullLM22, oneCore=TRUE, nPasses=10, deconMatrices=NULL, remZinf=TRUE, method='DCQ', useRF=TRUE, incNonCluster=TRUE)
This software is covered by the MIT license. Celgene legal thought it was wise to break the license up into the two license files included in this list.
data("Licenses")
data("Licenses")
A data frame with 0 observations on the following 2 variables.
x
a numeric vector
y
a numeric vector
https://www.r-project.org/Licenses/MIT
data(Licenses) str(Licenses)
data(Licenses) str(Licenses)
Newman et al.'s 2015 22 leukocyte signature matrix.
data("LM22")
data("LM22")
A data frame with 547 observations on the following 22 variables.
B.cells.naive
a numeric vector
B.cells.memory
a numeric vector
Plasma.cells
a numeric vector
T.cells.CD8
a numeric vector
T.cells.CD4.naive
a numeric vector
T.cells.CD4.memory.resting
a numeric vector
T.cells.CD4.memory.activated
a numeric vector
T.cells.follicular.helper
a numeric vector
T.cells.regulatory..Tregs.
a numeric vector
T.cells.gamma.delta
a numeric vector
NK.cells.resting
a numeric vector
NK.cells.activated
a numeric vector
Monocytes
a numeric vector
Macrophages.M0
a numeric vector
Macrophages.M1
a numeric vector
Macrophages.M2
a numeric vector
Dendritic.cells.resting
a numeric vector
Dendritic.cells.activated
a numeric vector
Mast.cells.resting
a numeric vector
Mast.cells.activated
a numeric vector
Eosinophils
a numeric vector
Neutrophils
a numeric vector
Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). https://media.nature.com/original/nature-assets/nmeth/journal/v12/n5/extref/nmeth.3337-S2.xls
data(LM22) heatmap(as.matrix(LM22))
data(LM22) heatmap(as.matrix(LM22))
Load the MGSM27 signature matrix
loadMGSM27()
loadMGSM27()
The MGSM27 signature matrix from Identifying a High-risk Cellular Signature in the Multiple Myeloma Bone Marrow Microenvironment
MGSM27 <- loadMGSM27()
MGSM27 <- loadMGSM27()
Load the LM22 xCell map
loadModMap()
loadModMap()
A map between xCell cell type names and LM22 cell type names
xcellMap <- loadModMap()
xcellMap <- loadModMap()
Iteratively call testAllSigMatrices numLoops times with the option to fast stop if correlation, correlation spear, mae and rmse all converge
loopTillConvergence( numLoops, fastStop, exprData, changePer, handMetaCluster, testOnHalf, condTol = 1.01 )
loopTillConvergence( numLoops, fastStop, exprData, changePer, handMetaCluster, testOnHalf, condTol = 1.01 )
numLoops |
The number of iterations. Set to null to loop until results converge. |
fastStop |
Set to TRUE to break the loop when correlation, correlation spear, mae and rmse all converge |
exprData |
The single cell matrix |
changePer |
The maximum percentage of change allowed for convergence |
handMetaCluster |
A List of pre-defined meta clusters. Set to NULL to automatically group indistinguishable cells into same cluster use clustWspillOver (DEFAULT: NULL) |
testOnHalf |
Set to TRUE to leave half the data as a test set to validate all the matrices |
condTol |
The tolerance in the reconstruction algorithm. 1.0 = no tolerance, 1.05 = 5% tolerance (DEFAULT: 1.01) |
A list of results generated from all the iterative calls of testAllSigMatrices
ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) ct3 <- runif(1000, 0, 100) ct4 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2, ct3, ct3, ct3,ct3,ct4,ct4) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise #options(mc.cores=2) # This is a meta-function that calls other functions, # The execution speed is too slow for the CRAN automated check #loopTillConvergence(numLoops=10, fastStop=TRUE, exprData=dataMat, # changePer=10,handMetaCluster=NULL, testOnHalf=TRUE)
ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) ct3 <- runif(1000, 0, 100) ct4 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2, ct3, ct3, ct3,ct3,ct4,ct4) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise #options(mc.cores=2) # This is a meta-function that calls other functions, # The execution speed is too slow for the CRAN automated check #loopTillConvergence(numLoops=10, fastStop=TRUE, exprData=dataMat, # changePer=10,handMetaCluster=NULL, testOnHalf=TRUE)
Provide a gList and signature matrix with matched cell types to get signatures gene lists for GSVA and similar algorithms. gList=NULL select highest genes for each cell type, minimum of 3.
matrixToGenelist(sigMat, gList = NULL)
matrixToGenelist(sigMat, gList = NULL)
sigMat |
A signature matrix such as from ADAPTS::AugmentSigMatrix() |
gList |
A list of prioritized genes such as from ADAPTS::gListFromRF() (DEFAULT:NULL) |
A list of genes for each cell types musually in sigMat and gList
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise gList <- ADAPTS::gListFromRF(trainSet=dataMat, oneCore=TRUE) newSigMat <- ADAPTS::buildSeed(trainSet=dataMat, plotIt=FALSE) geneLists <- matrixToGenelist(sigMat=newSigMat, gList=gList)
library(ADAPTS) ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise gList <- ADAPTS::gListFromRF(trainSet=dataMat, oneCore=TRUE) newSigMat <- ADAPTS::buildSeed(trainSet=dataMat, plotIt=FALSE) geneLists <- matrixToGenelist(sigMat=newSigMat, gList=gList)
Calculate the mean and the standard deviation of the results from all the iterations, and also test for convergence by
Calculate the mean and the standard deviation of the results from all the iterations, and also test for convergence by
meanResults(allResList, changePer = 1)
meanResults(allResList, changePer = 1)
allResList |
A list of results generated from all the iterative calls of testAllSigMatrices |
changePer |
The maximum percentage of change allowed for convergence |
The mean and standard deviation of all the results, along with the number of iterations needed for the results to converge. A meta analysis for the results from multiple iterations
The mean and standard deviation of all the results, along with the number of iterations needed for the results to converge.
Newman et al's 2015 plus 5 myeloma specific cell types. Osteoclasts, Adipocytes, Osteoblasts, Multiple Myeloma Plasma Cells, and Plasma Memory Cells
data("MGSM27")
data("MGSM27")
A data frame with 601 observations on the following 27 variables.
B.cells.naive
a numeric vector
B.cells.memory
a numeric vector
Plasma.cells
a numeric vector
T.cells.CD8
a numeric vector
T.cells.CD4.naive
a numeric vector
T.cells.CD4.memory.resting
a numeric vector
T.cells.CD4.memory.activated
a numeric vector
T.cells.follicular.helper
a numeric vector
T.cells.regulatory..Tregs.
a numeric vector
T.cells.gamma.delta
a numeric vector
NK.cells.resting
a numeric vector
NK.cells.activated
a numeric vector
Monocytes
a numeric vector
Macrophages.M0
a numeric vector
Macrophages.M1
a numeric vector
Macrophages.M2
a numeric vector
Dendritic.cells.resting
a numeric vector
Dendritic.cells.activated
a numeric vector
Mast.cells.resting
a numeric vector
Mast.cells.activated
a numeric vector
Eosinophils
a numeric vector
Neutrophils
a numeric vector
MM.plasma.cell
a numeric vector
osteoblast
a numeric vector
osteoclast
a numeric vector
PlasmaMemory
a numeric vector
adipocyte
a numeric vector
MGSM27 as constructed for Identifying a High-risk Cellular Signature in the Multiple Myeloma Bone Marrow Microenvironment.
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3732/ https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-3711/ https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4152/
data(MGSM27) heatmap(as.matrix(MGSM27))
data(MGSM27) heatmap(as.matrix(MGSM27))
This wrapper is helpful because missForest crashes if you have more cores than variables. This will default to no parellelization for Windows
newMatrix <- missForest.par(dataMat)
missForest.par(dataMat, parallelize = "variables")
missForest.par(dataMat, parallelize = "variables")
dataMat |
Columns are features, Rows examples. The data with NA values. 'xmis' in missForest |
parallelize |
split on 'forests' or 'variables' (DEFAULT: 'variables') |
a matrix including imputed values
library(ADAPTS) LM22 <- ADAPTS::LM22 LM22[2,3] <- as.numeric(NA) #Make some missing data to impute LM22.imp <- missForest.par(LM22)
library(ADAPTS) LM22 <- ADAPTS::LM22 LM22[2,3] <- as.numeric(NA) #Make some missing data to impute LM22.imp <- missForest.par(LM22)
Plot the condition numbers during the growing and shrinking of signature matrices.
bonusPoints <- data.frame(legText = c('Unagumented Signature Matrix', 'Minimum Smoothed Condition Number', 'Best Augmented Signature Matrix'), pchs = c('o', 'x', 'x'), cols = c('red', 'purple', 'blue'), kappa = c(10, 15, 20), nGene = c(5, 10, 15))
plotKappas( kappas, nGenes, smData = NULL, titleStr = "Shrink Signature Matrix", bonusPoints = NULL, maxCond = 100 )
plotKappas( kappas, nGenes, smData = NULL, titleStr = "Shrink Signature Matrix", bonusPoints = NULL, maxCond = 100 )
kappas |
The condition numbers to plot |
nGenes |
The number of genes associated with each kapp |
smData |
Smoothed data to plot as a green line (DEFAULT: NULL) |
titleStr |
The title of the plot (DEFAULT: 'Shrink Signature Matrix') |
bonusPoints |
Set to plot additional points on the plot, see description (DEFAULT: NULL) |
maxCond |
Cap the condition number to maxCond (DEFAULT: 100) |
a matrix including imputed values
nGenes <- 1:300 kappas <- log(abs(nGenes-250)) kappas[is.infinite(kappas)] <- 0 kappas <- kappas+runif(300, 0, 1) smData <- stats::smooth(kappas) bonusPoints <- data.frame(legText = 'Minimum Smoothed ', pchs='x', cols='purple', kappa=min(smData), nGenes=nGenes[which.min(smData)]) plotKappas(kappas=kappas, nGenes=nGenes, smData=smData, bonusPoints=bonusPoints, maxCond=100)
nGenes <- 1:300 kappas <- log(abs(nGenes-250)) kappas[is.infinite(kappas)] <- 0 kappas <- kappas+runif(300, 0, 1) smData <- stats::smooth(kappas) bonusPoints <- data.frame(legText = 'Minimum Smoothed ', pchs='x', cols='purple', kappa=min(smData), nGenes=nGenes[which.min(smData)]) plotKappas(kappas=kappas, nGenes=nGenes, smData=smData, bonusPoints=bonusPoints, maxCond=100)
Use a t-test to rank to features for each cell type
gList <- rankByT(geneExpr, qCut=0.3)
rankByT( geneExpr, qCut = 0.3, oneCore = FALSE, secondPval = TRUE, remZinf = FALSE, reqRatGT1 = FALSE )
rankByT( geneExpr, qCut = 0.3, oneCore = FALSE, secondPval = TRUE, remZinf = FALSE, reqRatGT1 = FALSE )
geneExpr |
The gene expression data |
qCut |
(DEFAULT: 0.3) |
oneCore |
Set to TRUE to disable paralellization (DEFAULT: FALSE) |
secondPval |
Set to TRUE to use p-Values as a second sort criteria (DEFAULT: TRUE) |
remZinf |
Set to TRUE to remove any ratio with zero or infinity. Good for scRNAseq. (DEFAULT: FALSE) |
reqRatGT1 |
Set to TRUE to remove any gene with a ratio with less than 1. Good for scRNAseq. (DEFAULT: FALSE) |
a list of cell types with data frames ranking genes
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") #Fake source data with replicates for all purified cell types. # Note in this fake data set, many cell types have exactly one replicate fakeAllData <- cbind(fullLM22, as.data.frame(exprData)) gList <- rankByT(geneExpr = fakeAllData, qCut=0.3, oneCore=TRUE, reqRatGT1=FALSE)
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") #Fake source data with replicates for all purified cell types. # Note in this fake data set, many cell types have exactly one replicate fakeAllData <- cbind(fullLM22, as.data.frame(exprData)) gList <- rankByT(geneExpr = fakeAllData, qCut=0.3, oneCore=TRUE, reqRatGT1=FALSE)
With the ADAPTSdata packge, it will use the full LM22 data matrix and add a few additional genes to cover osteoblasts, osteoclasts, Plasma.memory, MM. In many ways this is just a convenient wrapper for AugmentSigMatrix that calculates and caches a gList.
remakeLM22p( exprData, fullLM22, smallLM22 = NULL, plotToPDF = TRUE, condTol = 1.01, postNorm = TRUE, autoDetectMin = FALSE, pdfDir = tempdir(), oneCore = FALSE, cache_gList = TRUE )
remakeLM22p( exprData, fullLM22, smallLM22 = NULL, plotToPDF = TRUE, condTol = 1.01, postNorm = TRUE, autoDetectMin = FALSE, pdfDir = tempdir(), oneCore = FALSE, cache_gList = TRUE )
exprData |
The gene express data to use to augment LM22, e.g. ADAPTSdata::addMGSM27 |
fullLM22 |
LM22 data with all genes. Available in ADAPTSdata2::fullLM22 |
smallLM22 |
The small LM22 matrix, if it includes new cell types in exprData those will not be overwritten (DEFAULT: NULL, i.e. buildLM22plus(useLM22genes = TRUE) |
plotToPDF |
TRUE: pdf, FALSE: standard display (DEFAULT: TRUE) |
condTol |
The tolerance in the reconstruction algorithm. 1.0 = no tolerance, 1.05 = 5% tolerance (DEFAULT: 1.01) |
postNorm |
Set to TRUE to normalize new signatures to match old signatures. To Do: Redo Kappa curve? (DEFAULT: TRUE) |
autoDetectMin |
Set to true to automatically detect the first local minima. GOOD PRELIMINARY RESULTS (DEAFULT: FALSE) |
pdfDir |
A fold to write the pdf file to if plotToPDF=TRUE (DEFAULT: tempdir()) |
oneCore |
Set to TRUE to disable parallelization (DEFAULT: FALSE) |
cache_gList |
Set to TRUE to cache slow gList calculations (DEFAULT: TRUE) |
a cell type signature matrix
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells types exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") newSig <- remakeLM22p(exprData=exprData, fullLM22=fullLM22, smallLM22=smallLM22, plotToPDF=FALSE, oneCore=TRUE, cache_gList=FALSE)
#This toy example treats the LM22 deconvolution matrix as if it were all of the data # For a real example, look at the vignette or comments in exprData, fullLM22, small LM22 library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:200, 1:8] #Make a fake signature matrix out of 100 genes and the first 8 cell types smallLM22 <- fullLM22[1:100, 1:8] #Make fake data representing two replicates of purified Mast.cells types exprData <- ADAPTS::LM22[1:200, c("Mast.cells.resting","Mast.cells.activated")] colnames(exprData) <- c("Mast.cells", "Mast.cells") newSig <- remakeLM22p(exprData=exprData, fullLM22=fullLM22, smallLM22=smallLM22, plotToPDF=FALSE, oneCore=TRUE, cache_gList=FALSE)
This function is intended to collapse many single cells into 3 (groupsize) groups with the average count across all cells in each of the groups. These groups can then be used to perform a t-test (for example) between the 3 groups of CellX with 3 groups of CellY
scSample( RNAcounts, cellIDs = colnames(RNAcounts), groupSize = 3, randomize = TRUE, mc.cores = 1 )
scSample( RNAcounts, cellIDs = colnames(RNAcounts), groupSize = 3, randomize = TRUE, mc.cores = 1 )
RNAcounts |
The single cell matrix |
cellIDs |
A vector will cell types for each column in scCountMatrix (DEFAULT: colnames(RNAcounts)) |
groupSize |
The number of sets to break it up into (DEFAULT: 3) |
randomize |
Set to TRUE to randomize the sets (DEFAULT: TRUE) |
mc.cores |
The number of cores to use (DEFAULT: 1) |
a list with a multiple sets
RNAcounts <- matrix(0, nrow=10, ncol=100) rownames(RNAcounts) <- make.names(rep('Gene', nrow(RNAcounts)), unique=TRUE) colnames(RNAcounts) <- make.names(c('CellX', rep('CellY', 39), rep('CellZ', 30), rep('CellB', 30)), unique=TRUE) RNAcounts[, grepl('CellY', colnames(RNAcounts))] <- 1 RNAcounts[, grepl('CellZ', colnames(RNAcounts))] <- 2 RNAcounts[, grepl('CellB', colnames(RNAcounts))] <- 3 scSample(RNAcounts, groupSize=3)
RNAcounts <- matrix(0, nrow=10, ncol=100) rownames(RNAcounts) <- make.names(rep('Gene', nrow(RNAcounts)), unique=TRUE) colnames(RNAcounts) <- make.names(c('CellX', rep('CellY', 39), rep('CellZ', 30), rep('CellB', 30)), unique=TRUE) RNAcounts[, grepl('CellY', colnames(RNAcounts))] <- 1 RNAcounts[, grepl('CellZ', colnames(RNAcounts))] <- 2 RNAcounts[, grepl('CellB', colnames(RNAcounts))] <- 3 scSample(RNAcounts, groupSize=3)
Remove genes by chunks by picking those the most improve the condition number. Will set any infinite condition numbers to max(kappas[!is.infinite(kappas)])+1 Return the condition numbers with their gene lists
shrinkByKappa( sigMatrix, numChunks = NULL, verbose = TRUE, plotIt = TRUE, singleCore = FALSE, fastStop = TRUE )
shrinkByKappa( sigMatrix, numChunks = NULL, verbose = TRUE, plotIt = TRUE, singleCore = FALSE, fastStop = TRUE )
sigMatrix |
The original signature matrix |
numChunks |
The number of groups of genes to remove (DEFAULT: NULL) |
verbose |
Print out the current chunk as is it's being calculated (DEFAULT: NULL) |
plotIt |
The title of the plot (DEFAULT: TRUE) |
singleCore |
Set to FALSE to use multiple cores to calculate condition numbers (DEFAULT: FALSE) |
fastStop |
Halt early when the condition number changes by less than 1 for 3 iterations (DEFAULT: FALSE) |
A list with condition numbers and gene lists
library(ADAPTS) LM22 <- ADAPTS::LM22 sigGenesList <- shrinkByKappa(sigMatrix=LM22[1:100,1:5], numChunks=4, verbose=FALSE, plotIt=FALSE, singleCore=TRUE, fastStop=TRUE)
library(ADAPTS) LM22 <- ADAPTS::LM22 sigGenesList <- shrinkByKappa(sigMatrix=LM22[1:100,1:5], numChunks=4, verbose=FALSE, plotIt=FALSE, singleCore=TRUE, fastStop=TRUE)
Use shrinkByKappa and automatic minima detection to reduce a signature matrix. Select the new signature matrix with the minima and the maximum number of genes. There is an inherent difficult in that the condition number will tend to have a second peak at a relatively small number of genes, and then crash so that smallest condition number has more or less one gene.
By default, the algorithm will tend to pick the detected minima with the largest nubmer of genes. aggressiveMin=TRUE will try to find the minimum number of genes that has more genes than the maxima at the smallest number of genes
shrinkSigMatrix( sigMatrix, numChunks = 100, verbose = FALSE, plotIt = FALSE, aggressiveMin = TRUE, sigGenesList = NULL, singleCore = FALSE, fastStop = TRUE )
shrinkSigMatrix( sigMatrix, numChunks = 100, verbose = FALSE, plotIt = FALSE, aggressiveMin = TRUE, sigGenesList = NULL, singleCore = FALSE, fastStop = TRUE )
sigMatrix |
The original signature matrix |
numChunks |
The number of groups of genes to remove. NULL is all genes (DEFAULT: 100) |
verbose |
Print out the current chunk as is it's being calculated (DEFAULT: NULL) |
plotIt |
Set to TRUE to plot (DEFAULT: FALSE) |
aggressiveMin |
Set to TRUE to aggresively seek the smallest number of genes (DEFAULT: TRUE) |
sigGenesList |
Set to use precomputed results from shrinkByKappa (DEFAULT: NULL) |
singleCore |
Set to FALSE to use multiple cores to calculate condition numbers (DEFAULT: FALSE) |
fastStop |
Halt early when the condition number changes by less than 1 for 3 iterations (DEFAULT: TRUE) |
A list with condition numbers and gene lists
library(ADAPTS) LM22 <- ADAPTS::LM22 newSigMat <- shrinkSigMatrix(sigMatrix=LM22[1:100,1:5], numChunks=4, verbose=FALSE, plotIt=FALSE, aggressiveMin=TRUE, sigGenesList=NULL, singleCore=TRUE, fastStop=FALSE)
library(ADAPTS) LM22 <- ADAPTS::LM22 newSigMat <- shrinkSigMatrix(sigMatrix=LM22[1:100,1:5], numChunks=4, verbose=FALSE, plotIt=FALSE, aggressiveMin=TRUE, sigGenesList=NULL, singleCore=TRUE, fastStop=FALSE)
Build an n-pass spillover matrix, continuing until the results converge into clusters of cell types
deconMatrices <- spillToConvergence(sigMatrix, geneExpr, 100, FALSE, TRUE)
spillToConvergence( sigMatrix, geneExpr, nPasses = 100, plotIt = FALSE, imputNAs = FALSE, method = "DCQ" )
spillToConvergence( sigMatrix, geneExpr, nPasses = 100, plotIt = FALSE, imputNAs = FALSE, method = "DCQ" )
sigMatrix |
The deconvolution matrix, e.g. LM22 or MGSM27 |
geneExpr |
The source gene expression matrix used to calculate sigMatrix |
nPasses |
The maximum number of iterations (DEFAULT: 100) |
plotIt |
Set to TRUE to plot it (DEFAULT: FALSE) |
imputNAs |
Set to TRUE to imput genes with missing values & cache the imputed. FALSE will just remove them (DEFAULT: FALSE) |
method |
One of 'DCQ', 'SVMDECON', 'DeconRNASeq', 'proportionsInAdmixture', 'nnls' (DEFAULT: DCQ) |
A list of signature matrices
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] deconMatrices <- spillToConvergence(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10, plotIt=TRUE)
#This toy example library(ADAPTS) fullLM22 <- ADAPTS::LM22[1:30, 1:4] smallLM22 <- fullLM22[1:25,] deconMatrices <- spillToConvergence(sigMatrix=smallLM22, geneExpr=fullLM22, nPasses=10, plotIt=TRUE)
Take a matrix of single cell data with genes as rows and each column corresponding to a single cells. Break it up into rougly equal subsets, taking care to make sure that each cell type is represented in each set if possible
splitSCdata( RNAcounts, cellIDs = colnames(RNAcounts), numSets = 3, verbose = TRUE, randomize = TRUE )
splitSCdata( RNAcounts, cellIDs = colnames(RNAcounts), numSets = 3, verbose = TRUE, randomize = TRUE )
RNAcounts |
The single cell matrix |
cellIDs |
A vector will cell types for each column in scCountMatrix (DEFAULT: colnames(RNAcounts)) |
numSets |
The number of sets to break it up into (DEFAULT: 3) |
verbose |
Set to TRUE to print cell counts as it goes (DEFAULT: TRUE) |
randomize |
Set to TRUE to randomize the sets (DEFAULT: TRUE) |
a list with a multiple sets
RNAcounts <- matrix(0, nrow=10, ncol=30) rownames(RNAcounts) <- make.names(rep('Gene', nrow(RNAcounts)), unique=TRUE) colnames(RNAcounts) <- make.names(c('CellX', rep('CellY', 9), rep('CellZ', 10), rep('CellB', 10)), unique=TRUE) RNAcounts[, grepl('CellY', colnames(RNAcounts))] <- 1 RNAcounts[, grepl('CellZ', colnames(RNAcounts))] <- 2 RNAcounts[, grepl('CellB', colnames(RNAcounts))] <- 3 splitSCdata(RNAcounts, numSets=3)
RNAcounts <- matrix(0, nrow=10, ncol=30) rownames(RNAcounts) <- make.names(rep('Gene', nrow(RNAcounts)), unique=TRUE) colnames(RNAcounts) <- make.names(c('CellX', rep('CellY', 9), rep('CellZ', 10), rep('CellB', 10)), unique=TRUE) RNAcounts[, grepl('CellY', colnames(RNAcounts))] <- 1 RNAcounts[, grepl('CellZ', colnames(RNAcounts))] <- 2 RNAcounts[, grepl('CellB', colnames(RNAcounts))] <- 3 splitSCdata(RNAcounts, numSets=3)
Use SVMDECONV to estimate the cell count percentage David L Gibbs, [email protected] June 9, 2017
v-SVR is applied with a linear kernel to solve for f, and the best result from three values of v = 0.25, 0.5, 0.75 is saved, where ‘best’ is defined as the lowest root mean squared error between m and the deconvolution result, f x B.
Our current implementation executes v-SVR using the ‘svm’ function in the R package, ‘e1071’.
w2 <- SVMDECON(m, B)
SVMDECON(m, B)
SVMDECON(m, B)
m |
a matrix represenging the mixture (genes X 1 sample) |
B |
a matrix representing the references (genes X cells), m should be subset to match B |
A matrix with cell type estimates for each samples
This wrapper is helpful for repetitively matrix generation. It generates seed matrix, all-gene matrix, augmented matrix, shrunk matrix, and all the clustered matrices in one call.
testAllSigMatrices( exprData, randomize = TRUE, skipShrink = FALSE, proportional = FALSE, handMetaCluster = NULL, testOnHalf = TRUE, condTol = 1.01, numChunks = 100, plotIt = TRUE, fastStop = TRUE, singleCore = TRUE )
testAllSigMatrices( exprData, randomize = TRUE, skipShrink = FALSE, proportional = FALSE, handMetaCluster = NULL, testOnHalf = TRUE, condTol = 1.01, numChunks = 100, plotIt = TRUE, fastStop = TRUE, singleCore = TRUE )
exprData |
The gene express data. Each row is a gene, and each column is an example of a particular cell type. |
randomize |
Set to to TRUE randomize the sets selected by ADAPTS::scSample (DEFAULT: TRUE) |
skipShrink |
Set to TRUE to skip shrinking the signatrure matrix (DEFAULT: TRUE) |
proportional |
Set to true to make the training set cell type proportional. Ignores group size (DEFAULT: FALSE) |
handMetaCluster |
A List of pre-defined meta clusters.Set to NULL to automatically group indistinguishable cells into same cluster using clustWspillOver.(DEFAULT: NULL) |
testOnHalf |
Set to TRUE to leave half the data as a test set |
condTol |
The tolerance in the reconstruction algorithm. 1.0 = no tolerance, 1.05 = 5% tolerance (DEFAULT: 1.01) |
numChunks |
The number of groups of genes to remove while shrinking (DEFAULT: NULL, i.e. 1) |
plotIt |
Set to FALSE to suppress plots (DEFAULT: TRUE) |
fastStop |
Halt early when the condition number changes by less than 1 for 3 iterations (DEFAULT: TRUE) |
singleCore |
TRUE for a single core (DEFAULT: TRUE) |
A list of results including prediction accuracy and cell enrichment
ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) ct3 <- runif(1000, 0, 100) ct4 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2, ct3, ct3, ct3,ct3,ct4,ct4) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise metaList <- list() colnames(dataMat) <- sub('\\..*','', colnames(dataMat)) metaList[[1]] <- c(unique(colnames(dataMat))[1]) #Cell Type 1 metaList[[2]] <- c(unique(colnames(dataMat))[2]) #Cell Type 2 metaList[[3]] <- c(unique(colnames(dataMat))[3]) #Cell Type 3 metaList[[4]] <- c(unique(colnames(dataMat))[4:length(unique(colnames(dataMat)))]) #Cell Type 4 #options(mc.cores=2) # This is a meta-function that calls other functions, # The execution speed is too slow for the CRAN automated check #testAllSigMatrices(exprData=dataMat, randomize = TRUE, skipShrink=FALSE, # proportional=FALSE, handMetaCluster=metaList, testOnHalf=TRUE, numChunks=NULL)
ct1 <- runif(1000, 0, 100) ct2 <- runif(1000, 0, 100) ct3 <- runif(1000, 0, 100) ct4 <- runif(1000, 0, 100) dataMat <- cbind(ct1, ct1, ct1, ct1, ct1, ct1, ct2, ct2, ct2, ct2, ct3, ct3, ct3,ct3,ct4,ct4) rownames(dataMat) <- make.names(rep('gene', nrow(dataMat)), unique=TRUE) noise <- matrix(runif(nrow(dataMat)*ncol(dataMat), -2, 2), nrow = nrow(dataMat), byrow = TRUE) dataMat <- dataMat + noise metaList <- list() colnames(dataMat) <- sub('\\..*','', colnames(dataMat)) metaList[[1]] <- c(unique(colnames(dataMat))[1]) #Cell Type 1 metaList[[2]] <- c(unique(colnames(dataMat))[2]) #Cell Type 2 metaList[[3]] <- c(unique(colnames(dataMat))[3]) #Cell Type 3 metaList[[4]] <- c(unique(colnames(dataMat))[4:length(unique(colnames(dataMat)))]) #Cell Type 4 #options(mc.cores=2) # This is a meta-function that calls other functions, # The execution speed is too slow for the CRAN automated check #testAllSigMatrices(exprData=dataMat, randomize = TRUE, skipShrink=FALSE, # proportional=FALSE, handMetaCluster=metaList, testOnHalf=TRUE, numChunks=NULL)
Use weightNorm to normalize the SVM weights. Used for SVMDECONV
w1 <- weightNorm(w)
weightNorm(w)
weightNorm(w)
w |
The weight vector from fitting an SVM, something like something like t(fit1$coefs) %*% fit1$SV, where fit comes from <- svm(m~B, nu=0.25, kernel="linear")) |
a weight vector